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Abstract. We give a realization of the Kirillov–Reshetikhin crystal B1,s for ŝln using
Nakajima monomials using the crystal structure given by Kashiwara. We describe
the tensor product

⊗N
i=1 B1,si in terms of a shift of indices, allowing us to recover the

Kyoto path model. We give a description of the limit of the coherent family of crystals
{B1,s}∞

s=1 using Nakajima monomials, which allows us to recover the path model for
B(∞). Additionally, we realize the KR crystals Br,1 for ŝln using Nakajima monomials.
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1 Introduction

A special class of finite-dimensional modules of the derived subalgebra Drinfel’d–Jimbo
quantum group U′q(ŝln) called Kirillov–Reshetikhin (KR) modules have received signif-
icant attention over the past 20 years. KR modules have many remarkable properties
and deep connections with mathematical physics. For example, KR modules arise in
the study of certain solvable lattice models [15, 25]. Their characters (respectively q-
characters [8, 9]) satisfy the Q-system (respectively T-system) relations, which come from
a certain cluster algebra [12, 37]. This gives a fermionic formula interpretation and a re-
lation to the string hypothesis in the Bethe ansatz for solving Heisenberg spin chains.
The graded characters of (respectively Demazure submodules of) tensor products of
certain KR modules, the fundamental representations, are (respectively nonsymmetric)
Macdonald polynomials at t = 0 [32, 33] (respectively [35]).

In the seminal papers [21, 22], Kashiwara defined the crystal basis of a representation
of a quantum group and that every irreducible highest weight representation admits a
crystal basis B(λ). While KR modules are cyclic modules, they are not highest weight
modules. Yet, KR modules for U′q(ŝln) admit crystal bases [20], which are known as
Kirillov–Reshetikhin (KR) crystals, and contain even further connections to mathematical
physics. For example, KR crystals are in bijection with rigged configurations [4, 26, 27,
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28], combinatorial objects that arise naturally from the Bethe ansatz. KR crystals B1,s can
be used to model box-ball systems [44]. KR crystals are perfect [7] and used in the Kyoto
path model [19, 20, 41], which arose from the study of integrable 2D lattice models.

Despite intense study, relatively little is understood about KR crystals. In particular,
there is currently not a combinatorial model for KR crystals where all crystal operators
are given by the same rules, the model is valid for general Br,s, and the model extends
to all affine types. By using the decomposition into Uq(sln)-crystals and the Dynkin
diagram automorphism, we can lift the tableaux model of [24] to a model for KR crystals
for U′q(ŝln) [43], but at the cost of obscuring the e0 and f0 crystal operators.

Partial progress has been made on this problem. Naito and Sagaki constructed a
model uniform across all types for

⊗N
i=1 Bri,1 by using the usual crystal structure on

Lakshmibai–Seshadri (LS) paths and projecting onto the classical weight space, where an
equivalent description is given by quantum LS paths (see [32, 34] and references therein).
Lenart and Lubovsky constructed

⊗N
i=1 Bri,1 by using a discrete version of quantum LS

paths called the quantum alcove path model [31]. Yet, it is not known how to extend
these models for general Br,s. On the other side, there are models for Br,s in type A(1)

n ,
for example [30], but these are not known to extend (uniformly) to other affine types.

There is a t-analog of q-characters (or q, t-characters for short) that was studied by
Nakajima [39, 37, 38, 40, 36]. From this study, a Uq(sln)-crystal structure on the mono-
mials that appear in the q-character was given by Nakajima [38]. Kashiwara [23] inde-
pendently constructed a different crystal structure on the q-character monomials. Both
models were generalized by Sam and Tingley [42], who also made a connection to quiver
varieties, which is known as the Nakajima monomial model.

Nakajima’s q, t-characters have also been well-studied using a variety of techniques.
While their definition is combinatorial, Nakajima used quiver varieties to show their ex-
istence [39]. Hernandez reformulated the definition to be purely algebraic by using a
t-analog of screening operators [11]. Nakajima also showed that q, t-characters can be
used to determine the change of basis from standard to simple Uq(ŝln)-modules in the
Grothendieck group [36]. Kodera and Naoi then connected this to the graded decom-
position into Uq(sln)-modules of a tensor product of fundamental representations [29],
which give Kostka polynomials [28] and Macdonald polynomials at t = 0 [32, 33].

Cluster algebras [6] also have strong connections to characters of KR crystals and
Nakajima monomials. Hernandez and Leclerc gave an algorithm to compute q-characters
as certain cluster variables from a semi-infinite quiver [13]. Kanakubo and Nakashima
showed that the generalized minors of the double Bruhat cell Gu,e = BuB ∩ B−eB− can
be expressed as the sum over the Nakajima monomials in a Demazure subcrystal [16]
and are the cluster variables of the coordinate ring C[Gu,e], an upper cluster algebra [1].

This is evidence that there should exist a natural description of tensor products of
KR crystals in terms of Nakajima monomials. Hernandez and Nakajima [14] construct⊗N

i=1 Bri,1 by a similar construction to the projected LS paths, and likewise, it does not
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Figure 1: Dynkin diagram of ŝln.

construct higher level KR crystals. Our main result is a construction of B1,s for U′q(ŝln)
using Nakajima monomials. From this construction, we are able to describe

⊗N
i=1 B1,si

without using tensor products. Moreover, we recover the Kyoto path model. From this
construction, we are able to relate the models of [42, 45] with the Kyoto path model.
We also extend our construction to the coherent limit of {B1,s}∞

s=1, where we recover the
path model for B(∞) [17] and the isomorphism with Nakajima monomials given in [18].

Our results suggest a crystal interpretation for the fusion construction of [19, 20].
Indeed, the kernel of the R-matrix can be given by a (twisted) commutator relation on
the elements of B1,1. By considering the tensor product as multiplication, we can relate
our construction with the kernel of the R-matrix. Furthermore, our construction gives
an explanation of the link between the models explored in [42, 46, 45]. While our model
does not naturally extend to general Br,s or to other affine types, these links are evidence
that our construction can be modified to the general case.

This is an extended abstract of [10] and is organized as follows. In Section 2, we give
the necessary background. In Section 3, we describe our main results. In Section 4, we
describe Br,1 using Nakajima monomials. In Section 5, we relate our construction with
the kernel of the R-matrix.

2 Background

2.1 Crystals

Let ŝln be the affine Kac–Moody Lie algebra of type A(1)
n−1 with index set I = {0, 1, . . . , n−

1} (see Figure 1 for the Dynkin diagram), Cartan matrix (aij)i,j∈I , simple roots {αi}i∈I ,
simple coroots {hi}i∈I , fundamental weights {Λi}i∈I , weight lattice P, dual weight lattice
P∨, canonical pairing 〈 , 〉 : P∨ × P → Z given by

〈
hi, αj

〉
= aij, and quantum group

Uq(ŝln). Let P+ denote the dominant integral weights. The level of λ ∈ P is 〈c, λ〉,
where c = h0 + h1 + · · ·+ hn−1 is the canonical central element of ŝln. Note that sln is
the canonical simple Lie algebra given by the index set I0 = I \ {0}. Let {Λi}i∈I0 denote
the fundamental weights of sln.
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We write U′q(ŝln) = Uq([ŝln, ŝln]), and let δ = α0 + α1 · · ·+ αn−1 denote the null root.
Note that the U′q(ŝln) fundamental weights and simple roots are also given by {Λi}i∈I
and {αi}i∈I , respectively, but are considered in the weight lattice P/Zδ.

An Uq(ŝln)-crystal is a set B together with crystal operators ea, fa : B −→ Bt {0}, maps
εa, ϕa : B −→ Zt {−∞}, and a weight map wt: B −→ P satisfying certain conditions (see,
for example, [21, 22]). We say an element b ∈ B is highest weight if eib = 0 for all i ∈ I.

Kashiwara showed in [22] that the irreducible highest weight Uq(ŝln)-module V(λ)
admits a crystal basis, where λ ∈ P+. We denote this crystal basis by B(λ), and let
uλ ∈ B(λ) denote the unique highest weight element. The crystal corresponding to
U−q (ŝln), the lower half of Uq(ŝln), is denoted by B(∞) with highest weight element u∞.

We define the tensor product of abstract Uq(ŝln)-crystals B1 and B2 as the crystal B2 ⊗
B1 that is the Cartesian product B2 × B1 with the crystal structure

ei(b2 ⊗ b1) =

{
eib2 ⊗ b1 (εi(b2) > ϕi(b1)),
b2 ⊗ eib1 otherwise,

fi(b2 ⊗ b1) =

{
fib2 ⊗ b1 (εi(b2) ≥ ϕi(b1)),
b2 ⊗ fib1 otherwise,

εi(b2 ⊗ b1) = max(εi(b1), εi(b2)− 〈hi, wt(b1)〉),
ϕi(b2 ⊗ b1) = max(ϕi(b2), ϕi(b1) + 〈hi, wt(b2)〉),

wt(b2 ⊗ b1) = wt(b2) + wt(b1).

Remark 2.1. Our tensor product convention is opposite of Kashiwara [22].

Let B1 and B2 be two Uq(ŝln)-crystals. A crystal embedding ψ : B1 → B2 is an injection
B1 t {0} → B2 t {0} with ψ(0) = 0 such that, for all i ∈ I, we have ψ(eib) = eiψ(b) and
ψ( fib) = fiψ(b) for all b ∈ B1 and εi, ϕi, and wt are preserved under ψ. An isomorphism
is a crystal embedding that is also a bijection.

2.2 Nakajima monomials

Next, we give the Nakajima monomial model as a special case of [23, 42].
LetM denote the set of Laurent monomials in the commuting variables {Yi,k}i∈I,k∈Z.

For a monomial m = ∏i∈I ∏k∈Z Yyi,k
i,k , define

εi(m) = −min
k∈Z

∑
s>k

yi,s, ke(m) = max

{
k εi(m) = −∑

s>k
yi,s

}
,

ϕi(m) = max
k∈Z

∑
s≤k

yi,s, k f (m) = min

{
k ϕi(m) = ∑

s≤k
yi,s

}
,
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and wt(m) = ∑i∈I ∑k∈Z yi,kΛi. Define the crystal operators ei, fi : M→Mt{0} by

ei(m) =

{
0 if εi(m) = 0,
mAi,ke(m)−1 if εi(m) > 0,

fi(m) =

{
0 if ϕi(m) = 0,
mA−1

i,k f (m)−1 if ϕi(m) > 0,

where Ai,k = Yi,kYi,k+1Y−1
i−1,kY−1

i+1,k+1. We also denote Yλ := ∏i∈I Y〈hi,λ〉
i,0 and 1 = Y0.

Theorem 2.2 ([42]). Let λ ∈ P+, and letM(λ) denote the closure of Yλ under ei and fi for all
i ∈ I. Then we haveM(λ) ∼= B(λ) as U′q(ŝln)-crystals.

Next, we define the modified crystal operators e′i and f ′i by instead using

k′e(m) =

{
0 if ke(m) is undefined,
ke(m) otherwise,

k′f (m) =

{
0 if k f (m) is undefined,
k f (m) otherwise.

Theorem 2.3 ([18]). Let M(∞) denote the closure of 1 under ei and f ′i for all i ∈ I. Then we
haveM(∞) ∼= B(∞) as U′q(ŝln)-crystals.

2.3 Kirillov–Reshetikhin crystals and the Kyoto path model

A Kirillov–Reshetikhin (KR) module Wr,s, where r ∈ I0 and s ∈ Z>0, is a particular ir-
reducible finite-dimensional U′q(ŝln)-module that has many remarkable properties. KR
modules are classified by their Drinfel’d polynomials, and Wr,s is the minimal affiniza-
tions of the highest weight Uq(sln)-representation V(sΛr) [2, 3]. The module Wr,s admits
a crystal basis [20], which is denoted by Br,s and called a Kirillov–Reshetikhin (KR) crystal.

KR crystals have many important properties. One property is that the KR crystal Br,s

is a perfect crystal of level s, a technical condition that we do not explicitly need here (see,
e.g., [20] for a precise definition). Another property is Br,s ∼= B(sΛr) as Uq(sln)-crystals.

We will be focusing on the KR crystal B1,s, which is known to admit the following
model from the vector representation. We have

B1,s =

{
(x1, . . . , xn) x1, . . . , xn ∈ Z≥0,

n

∑
i=1

xi = s

}

with the crystal structure

ei(x1, . . . , xn) =

{
0 if xi+1 = 0,
(. . . , xi + 1, xi+1 − 1, . . .) if xi+1 > 0,

εi(x1, . . . , xn) = xi+1,

fi(x1, . . . , xn) =

{
0 if xi = 0,
(. . . , xi − 1, xi+1 + 1, . . .) if xi > 0,

ϕi(x1, . . . , xn) = xi,
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and wt(x1, . . . , xn) = ∑i∈I(xi − xi+1)Λi, where all indices are understood mod n.

Theorem 2.4 ([19, 20, 41]). Let λ ∈ P+ be a level s weight. Let B be a perfect crystal of level
s. Let bλ ∈ B be the unique element such that ϕ(bλ) = λ. Let µ = ε(bλ). Then the map
Ψ : B(λ)→ B⊗ B(µ) defined by uλ 7→ bλ ⊗ uµ is a Uq(ŝln)-crystal isomorphism.

For a level s weight λ, we can construct a model for B(λ) by iterating Ψ:

Ψ+∞ : B(λ)→ B1,s ⊗ B1,s ⊗ · · · (2.5)

since B1,s is a perfect crystal of level s. This is the Kyoto path model. Furthermore, Ψ+∞(uλ)
is eventually cyclic and, for any b ∈ B(λ), Ψ+∞(b) only differs from Ψ+∞(uλ) in a finite
number of factors. Therefore, we can consider ΨN(b) for N � 1 (that depends on b) to
define the crystal structure on the Kyoto path model using only the KR crystal B1,s.

There is also an analog of the Kyoto path model given in [17] for B(∞). We first need
the coherent limit B∞ of the family {B1,s}∞

s=1, which is formed by taking the closure of
b∞ = (0, 0, . . . , 0) under the crystal operators ei(x1, . . . , xn) = (. . . , xi + 1, xi+1 − 1, . . .)
and fi(x1, . . . , xn) = (. . . , xi − 1, xi+1 + 1, . . .) with wt(x1, . . . , xn) = ∑i∈I(xi − xi+1)Λi.
Thus, we can construct B(∞) by iterating the following.

Theorem 2.6. Let B∞ denote the coherent limit of {Bs}∞
s=1, where Bs is a perfect crystal of level s.

The map Ω : B(∞)→ B∞ ⊗ B(∞) given by u∞ 7→ b∞ ⊗ u∞ is a U′q(ŝln)-crystal isomorphism.

3 Nakajima monomial realization of B1,s and B∞

In this section, we will state our main results. We first need to change our variables to
Xi,k := Y−1

i−1,k+1Yi,k introduced in [18]. Next, define

M1,s :=

{
n

∏
i=1

Xxi
i,0 x1, . . . , xn ∈ Z≥0,

n

∑
i=1

xi = s

}
.

Theorem 3.1. We have B1,s ∼= M1,s as U′q(ŝln)-crystals. Moreover, the isomorphism is given
by (x1, . . . , xn) 7→ Xx1

1,0Xx2
2,0 · · ·X

xn
n,0.

To defineM1,s, we considered the crystal generated from Xs
1,0. However, by shifting

the monomials, we can construct an isomorphism with the tensor product. Indeed,
let τj be the (multiplicative) map given by Yi,k 7→ Yi,k+j for all i ∈ I and k ∈ Z. Let
M·M′ = {m ·m′ | m ∈ M, m′ ∈ M′} under the usual crystal operators.

Theorem 3.2. For any sequence 0 < j1 < · · · < jN, we have ∏N
k=1 τjk(M

1,sk) ∼=
⊗N

k=1 B1,sk as
U′q(ŝln)-crystals.
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Figure 2: The crystalM1,3 for ŝl3.

As a special case of Theorem 3.2, we have that
⊗N

k=1 B1,sk ∼= ∏N
k=1 τk−1(M1,sk). Let

Φ+∞ be the isomorphism for N → ∞. Note that Φ+∞ recovers the Kyoto path model.

Theorem 3.3. Let λ ∈ P+ be a level s weight. Let Ξ : B(λ) → M(λ) be the canonical
isomorphism and Ψ+∞ : B(λ)→ B1,s⊗ B1,s⊗ · · · from Equation (2.5). Then Φ+∞ ◦Ψ+∞ = Ξ.

Example 3.4. Consider U′q(ŝl5). Then we have

Φ+∞(uΛ0) = Y0,0Y−1
4,1 τ1(Y4,0Y−1

3,1 )τ2(Y3,0Y−1
2,1 )τ3(Y2,0Y−1

1,1 )τ4(Y1,0Y−1
0,1 )τ5(Y0,0Y−1

4,1 ) · · ·
= Y0,0Y−1

4,1 Y4,1Y−1
3,2 Y3,2Y−1

2,3 Y2,3Y−1
1,4 Y1,4Y−1

0,5 Y0,5Y−1
4,6 · · ·

= Y0,0

We can also modify our construction to describe B∞ in terms of Nakajima monomials.
DefineM∞ as the closure of 1 under the modified crystal operators e′i and f ′i . We recover
the path model for B(∞) and [18, Thm. 5.1].

Theorem 3.5. We have B∞ ∼= M∞ as U′q(ŝln)-crystals, where the isomorphism is given by
(x1, . . . , xn) 7→ Xx1

1,0 · · ·X
xn
n,0. Moreover, the map Θ : M∞ ⊗M(∞) → M(∞) given by m⊗

m′ 7→ m · τ1(m′) is a U′q(ŝln)-crystal isomorphism.
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4 Nakajima monomial realization of Br,1

The KR crystal Br,1 can be described by (x1, . . . , xn) such that 0 ≤ xi ≤ 1, for all 1 ≤ i ≤ n,
and ∑n

i=1 xi = r with the crystal structure the same as the vector representation given in
Section 2.3. Hence, we have the following fact, which does not appear in the literature
as far as we are aware, but is likely known to experts.

Proposition 4.1. There exists a crystal embedding Br,1 → B1,r.

Therefore, we can quotient our monomials by X2
i,k and obtain a description for Br,1 in

terms of Nakajima monomials. We could also consider Xi,k as anticommuting variables
(up to sign) since V(Λr) can be constructed from

∧r V(Λ1). Explicitly, given a monomial
m, define modified crystal operators f i by f i(m) = fi(m) if fi(m) does not contain an X2

i,k
for some (i, k) ∈ I ×Z and f i(m) = 0 otherwise. The definition of ei is defined similarly
by replacing fi with ei. LetM(m) denote the closure of m under ei and f i.

Proposition 4.2. For any k ∈ Z, we have Br,1 ∼=M (∏r
i=1 Xi,k) as U′q(ŝln)-crystals.

5 Relation to the R-matrix

From Theorem 3.2, we can construct the tensor product B1,1 ⊗ B1,1 by considering the
product M1,1 with its shifted version τ1(M1,1). However, if we want to avoid the shift,
we can still construct M1,1 ⊗M1,1 by multiplication but having multiplication twisted
by a generic parameter t. This is a special case of the results of [11, 29, 39, 37, 38] given
in terms of Kashiwara’s variation of Nakajima monomials. The kernel of the appropriate
R-matrix is generated by K = {m⊗m′ − tm′ ⊗m | m 6= m′ ∈ M1,1}, which are twisted
commutators. Thus, the quotient (M1,1)⊗2/K ∼=M1,2, and this can be extended toM1,s.

Example 5.1. Consider the U′q(ŝl3)-crystalsM1,1⊗M1,1 andM1,2 (see Figure 3). The graded
q-character of T =M1,1 ⊗M1,1 is

∑
m⊗m′∈T

tE(m⊗m′)m ·m′ = Y−2
0,1 Y2

1,0 + (t + 1)Y0,0Y−1
1,1 Y2,0Y−1

2,1 + (t + 1)Y0,0Y−1
0,1 Y1,0Y−1

2,1

+ (t + 1)Y−1
0,1 Y1,0Y−1

1,1 Y2,0 + Y−2
1,1 Y2

2,0 + Y2
0,0Y−2

2,1 ,

where E(b) is the energy of b [19, 20]. By considering the (graded) decomposition into Uq(sl3)-
crystals, we get the same decomposition (after t 7→ t2) as computed by [11, 39, 37, 38] (note that
the Nakajima monomials we use are different). This correspondence is an example of the results
of [29]. If we quotient by K, we recover the crystal graph ofM1,2.

Due to the kernel of the R-matrix being essentially a twisted commutator, we be-
lieve our construction for B1,s only works for type ŝln. However, we expect a similar
construction to work for the general case of Br,s and for all affine types.
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Figure 3: The U′q(ŝl3)-crystalM1,1 ⊗M1,1 (left) andM1,2 (right).
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